An embedded system for handwritten digit recognition
نویسندگان
چکیده
منابع مشابه
Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملFPGA-Based Farsi Handwritten Digit Recognition System
A new method for feature extraction based on FPGA (Field Programmable Gate Arrays) implementation is proposed in this paper. The specific application is offline Farsi handwritten digit recognition. The classification is based on a simple two layer MLP (Multi Layer Perceptron). This method of feature extraction is appropriate for FPGA implementation as it can be implemented only with addition an...
متن کاملNeocognitron for handwritten digit recognition
The author previously proposed a neural network model neocognitron for robust visual pattern recognition. This paper proposes an improved version of the neocognitron and demonstrates its ability using a large database of handwritten digits (ETL1). To improve the recognition rate of the neocognitron, several modi0cations have been applied: such as, the inhibitory surround in the connections from...
متن کاملpersian handwritten digit recognition using particle swarm probabilistic neural network
handwritten digit recognition can be categorized as a classification problem. probabilistic neural network (pnn) is one of the most effective and useful classifiers, which works based on bayesian rule. in this paper, in order to recognize persian (farsi) handwritten digit recognition, a combination of intelligent clustering method and pnn has been utilized. hoda database, which includes 80000 p...
متن کاملOffline Handwritten Devnagari Digit Recognition
This paper presents a study on the performance of transformed domain features in Devnagari digit recognition. In this research the recognition performance is measured from features obtained in direct pixel value, Fourier Transform, Discrete Cosine Transform, Gaussian Pyramid, Laplacian Pyramid, Wavelet Transform and Curvelet Transform using classification schemes: Feed Forward, Function Fitting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Systems Architecture
سال: 2015
ISSN: 1383-7621
DOI: 10.1016/j.sysarc.2015.07.015